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CHILD DEVELOPMENT, 1985, 56, 840-952. Recent evidence has shown that although there are large
adult-child differences in overall problem-solving performance, even preschoolers have rudimen-
tary forms of strategies such as means-ends analysis that rely on the use of subgoals. However, in
many situations, means-ends analysis is not applicable, and in order to solve a problem, some other
method must be used. This study further explores preschoolers’ repertoire of problem-solving
methods. We use problems in which it is difficult to order subgoals, and in which, therefore, some
method other than means-ends analvsis must be used, 40 children between 45 and 70 months of age
were presented with problems having ambiguous subgoal ordering Although individual scores
varied widely, none of several indices of performance were reliably correlated with age A detailed
analysis of move sequences revealed that preschoolers (a) tend to avoid backup, (b) are sensitive to
incremental progress toward the goal, and (c) search 2 or 3 moves ahead for a goal All of these
component skills were combined into a "hill-climbing” methad that explains 70% of the variance in

problem difficulty.

It is wel]l known that adults and children
differ substantially in their ability to solve
problems, and several explanations have been
proposed to account for these differences.
One possibility is that adults’ immense
knowledge base is likely to include informa-
tion relevant to just about any task. Evidence
supporting this position comes from Chi’s
{1978} demonstration that, when provided
with task-specific knowledge greater than that
of aduits, children perform at higher leveis
than do adults. Another potential source of
adult-child differences is the capacity of the
underlying information-processing system.
For example, Case {1980) argues for a trade-
off between speed of processing and short-
term memory capacity that might undertie the
constant improvement in performance with
age that he has found in a wide range of tasks.

In this paper we focus on vet another
possible source of the difference in adult and
child problem solving: the availability of a re-
pertoire of general procedures, known in the
copnitive  science literature as  “weak
methods " Although usuallv inefficient com-
pared to the problem-specific methods that

might be used by a problem solver who was
familiar with a domain, the weak methods are
extremely general, and they often provide the
only basis for intelligent action (Laird, 1984;
Laird & Newell, 1983; Newell, 1980).

In order to understand the mechanisms
responsible for the development of weak
methods, we must first assess the extent to
which the different metheds are used at dif-
ferent ages, and the sequence in which the
full repertoire of methods becomes available.
The ability of young children to use some of
these procedures has been demonstrated by
previous investigators (Klahr & Robinson,
1981; Spitz & Borys, 1984; Spitz, Webster, &
Borys, 1982). In particular, preschool children
spontaneously use methods requiring the use
of subgoals, such as means-ends analvsis.

Ambiguous and Unambiguous
Subgoal Ordering

In this paper, we study preschoolers’
ability to solve problems in which means-
ends analvsis is ineffective By using a prob-
lem that precludes the use of subgoals, we
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FIG. 1.—Two kinds of Tower of Hanoi Problems: a, Tower-ending problems requiring 4, 5,6, and 7
moves to solution. These problems have an obvious subgoal ordering. b, Flat-ending problems requiring 4,
5. 6, and 7 moves to solution. These problems have a nonobvious subgeal ordering

can assess the extent to which children use
some of the other weak methods listed above.
Before describing the puzzle used in this
study, we discuss a ore familiar one in order
to make a distinction between problems that
have easilv ordered subgoals and those that
do not.

The “standard” Tower of Hanoi problem,
shown at the right side of Figure la, can be
decomposed into a set of subgoals that, if
achieved in the appropriate order, will lead to
a solution. A subject using means-ends analy-
sis would notice that there are three differ-
ences between the initial state and the goal
state: each disk is on the wrong peg. Then the
subject would have to decide which of these
differences to eliminate. In this case, the most
jmportant difference is the one associated
with the most constrained disk—disk 1-—and
a subgoal would be established to move disk
1 to the goal peg. But this move cannot be
made until disk 1 is free to move, so means-
ends analvsis sets up a new subgoal to move
the obstructing two-disk stack from Peg A to
Peg B.! The new subgoal would, in turn, gen-

erate its own subgoals, until finally a move
could be made directly.

Kizshr and Robinson (1981} found that
children's performance on the Tower of
Hanoi was strongly influenced by both the
number of subgoals generated and the ease of
ordering them. In general, preschoolers were
unable to keep more than two subgoals in
mind without becoming confused. But, for the
purposes of the present investigation, the
most important effect was the performance
decline when subgoal ordering was not self-
evident.

The two variants of the Tower of Hanoi
used by Klahr and Robinson differed in the
form of the goal state. On the tower-ending
problems, in which all the objects are stacked
on a single peg (Fig. la), half of the 6-year-old
subjects could solve 6-move problems, and
even 5-year-olds were able to solve 4-move
problems most of the time. On problems hav-
ing flat-ending goal states. in which each peg
has one object on it {Fig. 1b), there was a
substantial decline in performance. The pro-

! For s complete analysis of this and several other strategies on the Tower of Huanoi, see Simon

(1975}
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portion of 5- and 6-year-olds who could reli-
ably plan at least 4 moves ahead dropped
from 81% to 40%. Spitz et al. (1982) explored
the effects of non-tower-ending configurations
by using towers, flats, and partial towers as
goal states. They found that both retarded
adults {mean mental age of 10 years) and non-
retarded children {from 6 to 11 years old)
scored significantly higher on tower-ending
problems.

Tower-ending and flat-ending problems

differ in the obviousness of the ordering of

their subgoals. For tower-ending problems, it
is clear that the bhottom-most object must
reach the goal peg before the second from the
bottom, and so on. This subgoal sequence is
immediately apparent, even though the exact
move sequence necessary to achieve it may
not be. In contrast, flat-ending problems do
not have an obvious order in which disks
reach their goal pegs. The evidence cited
above suggests that when the surface form of
the problem does not suggest an unambigu-
ous ordering of subgoals, children have a
difficult time applying mean-ends analysis.

Instead, they must use an even weaker ane of

the weak methods—one that does not rely on
subgoal ordering

In this study, we further investigate how
preschool children behave when confronted
with problems having embiguous subgoal or-
dering. One extreme possibility is that when
children cannot use subgoals, they move
haphazardly in an unconstrained trial-and-
error fashion (see Piaget, 1976). On the other
hand, we might discover that they have
rudimentary forms of the weak methods that
enable them to do some or all of the follow-
ing: avoid unnecessarv backup; evaluate the
“goodness’ of a move; advance directly to-
ward a goal, once it is “visible.” Qur prob-
lems are designed to reveal the extent to
which preschool children can respond intelli-
gently in contexts where means-ends analysis
is not applicable. More specifically, we seek
evidence that thev can use a method known
as "hil} elimbing,” in which candidate moves
are chosen with respect to improvements in
an evaluation function.

The Dog-Cat-Mouse Puzzle

The Dog-Cat-Mouse (DCM} puzzle con-
sists of three tov animals (s dog, cat, and

Fic. 2-~The apparatus for the Dog-Cat-
Mouse problem. Each animal must be moved to its
favorite food: the dog to the hone, the cat to the fish,
and the mouse to the cheese

mouse) and three toy foods that “belong” to
the animals (a bone, a fish, and a piece of
cheese). The animals and the foods are ar-
ranged on a 26 X 26 X 6-cm game board
illustrated in Figure 2. The board has four
grooves running parallel to each side of the
square, and 2 diagonal groove between
the upper left and lower right corners of the
square formed by the four outside grooves.
The animals can move along the grooves, but
they cannot be rermoved from the board. The
foods can be fastened to and unfastened from
small patches of Velero glued to each of the
four comers. A problem consists of an initial
state-~indicated by the placement of each
animal in a corner of the puzzle-—and a final
state——indicated by some arrangement of the
bone, fish, and cheese. The goal of the prob-
lem is to move each animal to its corre-
sponding food.

This puzzle was chosen for several rea-
sons. First, and most important, it has ambigu-
ous subgoal ordering: the order in which the
animals will reach their foods is not at all ob-
vious. Second, it has easily remembered rules
and a natural way to represent the goal state,
Third, the puzzle has a sufficiently wide
range of levels of difficulty. Finally, it is
novel,? and children are unlikely to have en-
countered similar puzzles.

Problem Set
Before describing the partcular prob-
lems used in this study, it is necessary to de-

2 The DCM puzzle is formally identical to the “depth-of-search” puzzle invented by Borys
(1984) and first described by Spitz and Borys {1984) The puzzle is the simplest version of a class of
puzzles in which T tiles must be arranped in an M x N amay (T = M x N ~ 1). Examples include
the “'15-puzzle” studied by Newell and Simon {1872), the “8-puzzle” used by Ericsson (1976), and
the “S-puzzle” illustrated by Wicklegren (1974} In these terms, the DCM is a “3-puzzle ”



FiG. 3-—State space for the DCM problem.
Each node represents a unigque configuration of the
three animals. Each arc is labeled with the piece
that is moved to change states

scribe some of the formal properties of the
DCM puzzle. The state space is illustrated in
Figure 3. Each of the 24 nodes represents one
of the legal configurations of the three ani-
mals at one of the four comers of the game
board. Each arc label corresponds to the
animal that was moved to get from one state to
its neighbor. For example, traversing the state
space between nodes 1 and 2 requires a move
of the dog. All problems are defined in terms
of their initial states (determined by the ar-
rangement of the animals) and their final
states (determined by the arrangement of the
foods). For example, the problem shown in
Figure 2 starts at node 11 and ends at node
20.

Several properties of the state space are
relevant to our subsequent discussion:

1. Problems can be characterized in
terms of their path length: the minimum
number of moves required to get from the ini-
tial state to the final state. The 552 distinct
problems varv in path length from 1 move to 7
moves (example: 1-20 has a path length of 7).

9. If we abstract over the specific iden-
tih of the pieces, then there are only two
tvpes of nodes: those with open diagonals,
having three adjacent states (e.g., 2, 4, 18, 21),
and those with closed diagonals, having two
adjacent states (e.g, 1, 3, 18, 20). At an open
node, there are 3 possible moves; at a closed
node, there are 2 possible moves.

3 Rotation problems have both initial
and final states on the same hexagon—either
the inner or the outer. They have minimurm
paths that do not use the diagonal of the game
board (examples: 1-5, 23-17). All rotation
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problems have path lengths less than 7. Those
with path lengths less than 6 have unique so-
Jution paths (e.g, 1-5). Rotation problems
with path lengths egual to 6 have two
minimum path solutions (e.g., 1-7).

4. Permutation problems have initial and
final states on different hexagons, and require
the use of the diagonal. These problems start
and end with different permutations of the
three animals {i.e., D-C-M-D ... vs. D-M-C-D
. . .), and the permutation order can be
changed only by using the diagonal (exam-
ples: 115, 22-.3). Permutation problems gen-
erally have several minimum paths, for at
every open node of the state space, there is
the option of using the diagonal. For example,
the minimum path from node 1 to node 19
could cross from the outer to the inner loop at
nodes 2, 4, or 6.

The effect of problems that differ along
these attributes depends on the processes that
subjects use to solve them. If they use a lot of
forward search, then on average, longer prob-
lems should be more difficult, and for equal-
length problems, those starting with open
nodes (3 possible first moves) should, on aver-
age, be more difficult than those with closed
nodes (2 possible first moves). Permutation
problems should be easier for two reasons:
first, they usually have several minimum
paths, and if subjects are moving randomly
they are more likely to find one; and second,
if subjects are able to formulate subgoals,
then a very useful one would be to fix the
permutation (i.e.. use the diagonal) and then
rotate to the goal

Eight problems varving in path length
{(from 4 to 7). tvpe of initial node (open or
closed diagonal). and problem tvpe (permuta-
tion or rotation! were used. They are listed in
the bottom scction of Table 1. In order to
avoid fatipue. we used only eight problems
rather than the full set possible with 4 (path
lengths) x 2 (nitial node) x 2 (problem
type). (There are no T-move rotation prob-
lems, so the full set would have 14 problems )
In addition, four 3-move training problems
were used to familiarize the children with the
rules of the game They are shown at the top
of Table 1

Method

Subjects

Forty subjects, ranging in age from 45 to
70 months old (M = 5786, SID = 6.3), partici-
pated They were all attending the Camnegie-
Mellon Universits Children’s School, which
has a predominantly, but not exclusively,
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TABLE }

PROBLEM SET

Problem Initial Goal Path Initial Problem
No. State State Length Node Type
Training set:
T ... ... 1 4 3 Closed Rotation
T T 28 3 Closed Permutation
T3 ... ... 12 9 3 Open Rotation
T4 ... 2 17 3 Open Permutation
Problem set:
1. 17 21 4 Open Rotation
2 .. 18 8 4 Closed Permutation
3. il 20 5 Closed Permutation
4.. 10 3 5 Open Rotation
5.. 13 19 6 Open Rotation
6 .. 24 18 6 Closed Rotation
7. 14 7 7 Closed Permutation
8. . 15 8 7 Open Permutation

“This problem is illustrated in Figure 1.

white, middle-class population. (Data for one
subject were lost, so results are reported for
39 subjects.)

Procedure

Children were tested in a small play-
room, adjacent to their regular classrooms,
that was equipped with videotape recording
facilities. The experimenter was a 27-year-old
white female who had interacted with all the
children as a teaching aide throughout the
previous several months

After being brought into the room, the
children were presented with the DCM puz-
zle in the context of the following cover story.

This is & game about three hungry animals,
and vour job in the game will be to make sure that
each animal gets its favorite food 1 have a dog here
who loves to chew on bones—would vou please
give the dog his bone? I have a cat who loves to eat
fish, and I have a mouse who loves cheese [subject
distributes food] In this game I will mix up the
animais and the food and vou will have to move
each animal to its favorite food There are three
important rules about how vou can move the ani-
mals:

First of all, the animals always sit in the cor-
ners next to these circles They can move along
these blue lines—around the outside or up the mid-
dle backwards or forwards—but they alwavs have
to stop in a comer by a circle. That means thes can
never stop in the middle of a line like this

The second rule is that only one animal can be
in a corner at u time This is because my mouse is
afraid of my cat, my cat is afraid of my dog, and,
helieve it or not, this big dog is afraid of mice. So
they never sit together in one place, and vou must
never move an animal into & corner where another
one is already sithing.

The third rule is easy to remember—they al-
ways move one at a time. While the dog moves, the
cat and the mouse wait, and while the mouse
moves, the dog and the cat wait.

Let's start with a couple of easy ones and then
they will get harder.

Children were not explicitly instructed to
minimize the number of moves; nevertheless,
here, as in many other studies (e.g., De-
Loache, Sugarman, & Brown, in press; Kar-
miloff-Smith, 1879; Klahr & Robinson, 1981),
they appear to adopt efficiency as an implicit
constraint.

Problems were presented in the order
shown in Table 1: the four training problems
first, followed by problems 1-8. Children
were given two chances to produce a
minimum path solution to each problem. If a
problem was solved in the minimum number
of moves, then the next problem in the se-
quence was presented. If it was solved in
more than the minimum number, or if it had
not been solved after twice the minimum
number of moves had been made, or if the
subject gave up, then the same problem was
presented a second time. Regardless of
whether the second trial produced the
minimum path, a longer solution path, or no
solution, the next problem in the sequence
was then presented.

As each problem was presented, the chil-
dren were reminded to rearrange the animals
such that each animal would get its favorite
food. The children were allowed to make
their own moves; if they attempted an illegal
move, they were reminded of the rules. The



most common illegal moves were moving an
animal only halfway between two comers,
moving two animals to the same comer, or
attempting to rearrange the foods rather than
the animals. However, illegalities occurred
on fewer than 5% of trials and tended to occur
only on the training problems. All problem-
solving sessions were videotaped for subse-
quent analysis. Sessions took about 15 min to
complete.

Scoring

For each problem, subjects were as-
signed a 1/0 score based on whether or not
they found a minimum path solution by the
second presentation of the problem. Each
subject was assigned a score based on the pro-
portion of passes (1's) across the eight prob-
lems. Each problem was assigned a score
based on the proportion of subjects passing it.
(We also tried an alternative scoring proce-
dure: for each problem, a score of 2 was as-
signed if a minimum path solution was
achieved on the first presentation, a score of 1
if achieved on the second, and 0 otherwise.
The correlation between the alternative score
and the simpler [0/1} score was r[38] = 98,
none of the results to be reported would be
changed by the use of the alternative scoring )

Results

In this section, we first present aggregate
results across subiects and problems. Then
we present a detailed analysis that bears on
the components of weak methods listed ear-
lier: backup, partial evaluation, and search for
goal states. Following that, we turn to an anal-
vsis of relative problem difficulty based on
some of the formal properties of the problems
that were used in designing them. Then, in
the next section. we describe a model that
attempts to incorporate all of the components
into a single strategy.

Subjects’ performance varied widely: the
highest-performing subject solved all but one
problem (mean score = 8753, while three
subjects failed all but one (mean scores =
135). Problem difficulty also varied widely,
from nearly all subjects passing the easiest
problem to over 80% filing the hardest prob-
iem. The top-ranked subjects tended to fail
only the harder problems. and the lowest-
scoring subjects passed the easier rather than
the harder problems. However. there were
many discrepancies from a Guttman (1850)
scale (coefficient of reproducibility = 88)

Although ages were fairly uniformiy dis-
tributed between 50 and 65 months, the cor-
relation between age and proportion correct
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was surprisingly low, r(38) = 27, p < .10.
Furthermore, none of the more detailed anal-
yses (to be described subsequently) produced
an age-performance correlation any higher
than this.

Backup Analysis

One of the most rudimentary forms of
efficiency in problem solving is avoidance of
unnecessary moves. In the DCM puzzle,
moving the same piece in succession always
results in a two-move sequence having no ef-
fect: the puzzle returns to the state cccupied
at the start of the sequence. lf moves are
made at random, without regard to this “no-
backup’ constraint, then we would expect
33% of moves at open nodes and 50% of those
at closed nodes, or 42% of all moves, to be
double moves. Double moves were rare: out
of a total 3,350 moves, only 10% were dou-
bles. Individual subjects made double moves
on from 1% to 25% of their moves, but propor-
tion of double moves was uncorrelated either
with age (as mentioned above) or with overall
score.

Not all double moves are inefficient. If a
subject realizes that the current path is lead-
ing away from the goal, then a double move
may be the best way to start to head toward it.
Double moves were further analyzed to de-
termine the frequency with which they were
helpful. If a double move was the most
efficient way to get back on a minimum path,
then it was scored as acceptable. For each
subject, we computed the proportion of dou-
ble moves that were acceptable. Forty-four
percent of double moves were acceptable, but
this is no better than might be expected by a
random decision to make a double move. On
the rare occasions when children make dou-
ble moves, they do not make them for any
obvious reason.

One final comment on avoiding backup.
In the DCM problem. no backup is equiva-
lent to a prohibition on moving the same
animal twice in succession. and either one of
two general principles (“don't back up” vs.
“take turns’’) could serve as the source of the
constraint. In other words, rather than
avoiding backup, children might be conform-
ing to a simple turn-taking convention that
predisposed them to move the other two
pieces before moving the one just moved. But
this convention must be violated once on all
permutation problems. so that if it were oper-
ating here we would expect permutation
problems to be more difficult than nonpermu-
tation problems. But they are not: there is no
significant difference in the mean scores of
rotation and permutation problems. We con-
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clude that children are not adhering to a turn-
taking convention; instead, they aere avoiding
unnecessary backup.

Partial Evaluation

" Another rudimentary ability inherent in
several of the weak methods is evaluation of
the quality of a proposed move. The simplest
evaluation is binary: a state either matches
the goal or it does not. (For example, in
searching for a key on a key ring, one either
has the right key or the wrong key.) Much
more useful is the ability to make a partial
evaluation that gives some measure of how
well the current state matches the goal state.
Consider an evaluation function—EV(x, y)--
that can compute how many of the pieces in
state x are in the same positions in state y. For
example, EV(1, 7} = 0, because none of the
pieces are in matching positions, whereas
EV{24, 5) = 2, because both the cat and the
dog are positioned the same way in the two
states.

If the children were using such an evalu-
ation function, then we should see two kinds
of biases in their move patterns. One bias
would show up as a tendency to favor moves
that increase the number of pieces in their
goal locations. For example, in Problem 2 (18
— B), a first move of the cat increases the
evaluation function, while moving the dog
does not. The dog is also off the minimum
path. Over all trials and all subjects, on this
problem, the cat was moved 81% of the time.
Even more revealing are the “garden path”
problems, in which the evaluation function
produces a local improvement for moves off
the minimum path. In Problem 4 (10— 5), the
minimum path move is the mouse, which
does not increase the evaluation function.
Only the cat increases the partial evaluation
function. and it is preferred on 66% of the
trials. even though it is off the minimum path
Similarly, on Problem 5 (13 — 19}, the non-
mintmum move of the dog is preferred on
61% of the trials

The other bias would be a reluctance to
remove pieces from their goal locations—to
reduce the value of a partial evaluation func-
tion This can be assessed on Problem 3 (11
— 20). where the minimum path sequence
requires that the dog be temporarily removed
from its goal position On 63% of all trials with
Problem 3. subjects preferred to move the cat
rather than the dog. even though this took
them off the minimum path

For each subject. we computed an cvalu-
ation sensitivity score: the proportion of trials
on which, if such an evaluation function pre-

ferred one move to another, then the subject
chose {one of) the preferred alternative(s). Of
course, for many moves, the evaluation func-
tion vields no preferred alternative, and these
situations are excluded from the computation.

All subjects showed a sensitivity to par-
tial evaluation. Evaluation sensitivity scores
ranged from .60 to .80 (mean = .69, SD =
.05). However, as noted in the comments
about garden path problems, this sensitivity
to local evaluation is not necessarily ben-
eficial. Such “hill climbing” strategies can
lead to local maxima that are isolated from the
goal. Indeed, evaluation sensitivity scores are
negatively correlated with overall perfor-
mance, r{38) = — 48, p < 001, suggesting
that, on this set of DCM problems, exclusive
reliance on partial evaluation was dysfunc-
ticnal.

Goal Detection

Instead of a partial evaluation function, a
problem solver could function with only a bi-
nary evaluation in conjunction with some for-
ward search capacity. As an extreme example,
consider a strategy that searched as far for-
ward as necessary, testing each state for
whether or not it was a goal state. Once hav-
ing detected the goal, the problem solver
would simply follow the path that led to it. If
a subject lacked any partial evaluation capac-
ity, but had the ability to search n moves
ahead for the goal, then we should see perfect
performance (i.e., no deviations from a
minimum path} from n steps away. Overall,
the proportion of minimum path solutions 1,
2, 3, 4, and 5 moves distant from a goal was
.89, .96, 88, 66, and .29, respectively A ran-
dom mode! would varv from 40 to 20 over
the same range of distances.

Each subject was assigned o goal detec-
tion score based on the distance from the goal
that he or she could reach directiv HX¥ of
the time For example. il a subject produced

minimum path solutions ever tninc hie or sl
was 2 moves from the goal state hat onh 537
of the oceasions on which ho or she was 3
moves away, then the subjcct wonld gt i
goal detection score of 2 The distrihution ol
subjects at each level of the poal detection

score was O:4, 1:9, 2:11, 3:13 and 4.2 That ix
two-thirds of the subjects could prodace per-
fect solutions on all trials from at fecast 2
moves from goal states, and one-third of them
could even do it from 3 moves away None
could reliably find minimum path selutions
more than 4 moves distant. We can grant sub-
jects a 2-3-move capacity to search for the
goal state



Relative Problem Difficulty

The mean problem difficulty is shown in
the second column of Table 2. Path length
{shown in the third column) is a poor predic-
tor of problem difficulty. The two easiest
problems (1 and 2) are also the two shortest,
but even though they both have a path length
of 4, there is a 30% difference in the propor-
tion of subjects passing them. The next two
easiest problems (7 and 8) are the two Jongest
(7 moves). The four hardest problems are in-
termediate in path length, and within that set,
there is a large difference between the pairs
with the same path length. Overall, the corre-
lation between path length and problem
difficulty is not significant, {7) = — 42, p >
.10. Neither of the two other independent
variables had a reliable effect on problem
difficulty. For problem type, t = —1.75
(N.S.), and for starting node, t = —.63 (N.S.).

Another possible index of problem dif-
ficulty is what Spitz and Borys (1984) call sub-
goal length or “depth of search” (Borys, 1984).
It is defined as one less than the number of
steps on the minimum path before the first
object reaches its final position. Spitz and
Borys found that when second- and third-
grade children solved Tower of Hanoi prob-
lems, subgoal length was a good predictor of
problem difficulty. Thus defined, subgoal
length (see col. 4 in Table 2} explains only
43% of the variance in problem difficulty. The
marginally significant correlation between
subgoal length and problem difficulty is fur-
ther evidence that the DCM has ambiguous
subgoals
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Path length, node type, problem type,
and subgoal length are all structural vari-
ables: features of the problem rather than of
the problem-solving process. Even if they are
good predictors of difficulty, they leave un-
stated the underlying processes that they af-
fect. For example, the subgoal length calcula-
tion used above is based on a tenuous
assumption: that children can determine
which animal to focus on first in choosing
subgoals. As noted earlier, this is precisely
what makes the DCM puzzle difficult.

The general point is that structural vari-
ables alone do not cause behavior directly:
they are mediated by underlying processes.
In some cases, the process model is so obvi-
ous that it need not be made explicit. But in
situations of even modest complexity, such as
the DCM puzzle, there are several plausible
processes—or components of weak meth-
ods—and their interactions can only be
understood by formulation of an explicit pro-
cess model. Thus far, we have presented evi-
dence for sensitivity to partial evaluation, for
a no-backup constraint, and for a 2- or 3-move
search for goal states. In the next section, we
combine al} of these into a single model.

Strategic Analysis

How might children attempt to solve
these problems? In this section we will pro-
pose a model of the strategy that children use
when they face problems, such as the DCM,
in which subgoal ordering is ambiguous The
presentation has three parts. First, we de-
scribe a basic model (Model A) that is insensi-

TABLE Z

SUBJECT PERFORMANCE. STRUCTURAL VARIABLES, AND MODEL PERFORMANCE

Model A
Problem Subject Path Subgoal Model B
No Means®  Length  Length" (1 Triald (2 Tristsd (2 Trials)
1 640 4 2 333 356 544
2 950 4 | 300 730 869
3 436 5 3 375 604 510
4 179 2 3 167 310 AT8
3 . 184 6 4 333 356 388
6 . 263 6 4 Aas0 440 352
7 436 T 5 500 750 740
& 590 T 4 300 TS0 800
* Proportion of subjects finding minimum path solution by second attempt
5 Number of moves before first piece reaches final goul position
© Proportion of minimum path solutions found by Model A
¢ Computed probability of Model A finding solution with two attempts: F = g + (1 = p} %
P

* Probabilith of Model B finding minimum path within two attempts
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FIc 4 —Minimum solution paths for two of the problems used, with probabilities that Model A

would traverse a particular path

tive to partial solutions and very rigid in
adhering to its own rules ® Then we propose
several plausible alternative models, and
show that none of them fit the data very well.
Finally, we describe an aupmented model
(Model B) that more accurately captures some
of the fine structure of subjects’ behavior

Model A

Consider the inllowing procedure for
making moves in th- DCM state space:

i Ifthere is a sequence of two or fewer moves
that can reach the goal state, then make it Other-
wise,

2 Generate all candidate moves {all legal
moves. except the piece just moved).

3. If there is more than one candidate, choose
rundomly

4 Go to step 1

This is a simple generate-and-test strategy,
with two constraints: (a) 2-move look-ahead
tor the goal state (the look-ahead has a binary

evaluation function: the state is either the
goal or it is not; (b) no immediate backup

We can determine the probabilitv that
Model A would discover a minimum path so-
lution for each problem by computing the
compound probabilities that it will stav on a
minimum path. Two examples are presented
in Figure 4. For problem 2 (Fig 4a). there are
2 possible first moves to nodes 17 or 19, but
only node 19 is on the mintmum path At 14,
there are 3 legal moyew. but the retumn to state
18 is ruled out by the no-backup constraint,
leaving only 2 moves. both of which are on
the minimum path Reaching either nodes 6
or 20 leads directly to the goal via the 2-move
look-ahead. The fractions on each branch of
the figure show the probabilitv of that move,
and the fractions at the goa] nodes show the
probability’ that Model A will reach the goal
along a minimum path. Figure 4b shows a
similar analysis for problem 7

As Figure 4 illustrates, for problem 2,
and for problem 7 as well. there is a .5 proba-

® The strategies to be described represent first-order approximations to how the tvpical child in
this age range solves this puzzle Although it is likely that individual children are actually perform-
ing according to variants of these models, the data are not sufficientiy dense to enable us to identify
individual children with specific variants, as did Klahr and Robinson (1981)



bility that Model A will find a minimum path
solution, even though they have path lengths
of 4 and 7, respectively. The informal expla-
nation for this result is that Model A is likely
to solve this relatively short problem because
it does not have to go very far to do so, and it
is equally likely to solve a relatively long
problem because of the symmetry of the state
space. In particular, for problem 7, there is no
possibility of a “wrong move” until after the
first two have been made. Furthermore, for
this problem, there are many minimum path
solutions.

By applying this analysis to each of the
eight problems, we can compare the probabil-
ity that Model A would pass each problem
with the subjects’ actual performance. The
ffth and sixth columns of Table 2 list, respec-
tively, the probability that Model A would
find a minimum path on one trial, and within
two trials.* The correlation between the mean
problem difficulty and the probability that
Model A would pass by the second trial is .70
(p < 05, df = 7). In other words, Model A
explains about half of the variance in problem
difficulty. :

The generate-and-test method of Model
A has three important features: no immediate
backup, all-or-none evaluation, and a 2-step
look-ahead for the goal state. We can ask two
questions about these constraints. First, how
well do subjects adhere to them? Second,
how important are they? That is, if we
modified them, how close would we come to
matching subjects’ performance? The next
few sections address these questions.

The no-backup constraint.—Completely
removing the no-backup constraint substan-
tially reduces the probability of solution, for
it adds an extra branch to each of the nodes
in the analvsis shown in Figure 4. That is,
all the two-way branches become three-way
branches. and all the direct connections {e.g,
11-10 in problem 7) become binary nodes.
Fven with 2-move look-ahead, such a model
would perform far below the average solution
rates for our subjects. However, even though
children tend not to back up, they do it occa-
sionally (on 10% of their moves), and one im-
portant modification to Model A would be a
stochastic element that reflected this fact.

Evaluation —Model A uses an all-or-
none evaluation of goal states. As shown ear-
lier, subjects are sensitive to partial evalua-
tions on more than two-thirds of the instances
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where such evaluations make a difference.
Another modification to Model A would be
the inclusion of a mechanism exhibiting the
sarne sensitivity.

Depth of look-ahead —Model A's 2-
move look-ahead predicts perfect perfor-
mance from up to 2 moves away from a goal,
and then a sharp decline. As noted earlier,
subject performance is indeed quite good at 2
moves away, but it remains high (nearly 90%)
for 3 moves away, rather than dropping as
predicted. In fact, as noted in the discussion
of goal detection scores, nearly 40% of the
subjects exhibited perfect performance once
they were 3 moves away from the goal.

Given this relatively good performance
from 3 moves away, it is reasonable to con-
sider an alternative to Model A that differs
only in having 3-move, rather than 2-move,
look-ahead to the goal. But such a model
would produce very high likelihoods of suc-
cess within two trials, ranging from .97 and
94 for problems 8 and 7, to lows of .56 for
problems 1, 4, and 5. Not only does this 3-
move look-ahead produce unacceptably high
solution rates, but also, it only explains about
5% of the variance in subjects’ solution rates.

1f we degrade the 2-move look-ahead to a
1-move look-ahead, then two things happen.
First, the absolute level of performance drops,
which is to be expected, since 1-move look-
ahead will often branch off the minimum path
when it is only 2 moves away from solution.
whereas Model A would not Second, the
model now explains only 33% of the variance.

Summary of Model A—In summan.
Mode] A explains almost 50% of the variance
in problem difficulty  Alternative strategies
incorporating \ariations on the depth of the
look-ahead to the goud state do not do as well

Elimination ol no-backup trom Model A
yields unacceptably fow solution rates How-
ever, Model A oversimplifies children s per-

formance it two respects First the children
appear to by capable of partia] evaluation.
whereas Model A is not Second chitdren do
back up occasionally In the nuest section. we
describe and evaluate a model that mcorpo-
rates both of these facts

Model B
Mode! B makes moves according to the
following rules:

1. If there is a 2-move sequence that can reach
the goal state. then make it Otherwise,

* The probability of success by the second trial is: P = p =+ {} - p) ® p.where p = probabilib

of success on any single trial
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2. Generate all candidate moves. On all but
P\% of fials, delete the piece just moved from the
candidate set (e.g., backup is allowed P,% of the
time).

3. If there is more than one candidate, then
compute EV between each candidate node and the
goal node. Choose the move with the maximum EV
on Po% of trials Or, if all EVs are equal, choose
randomly.

4. Goto step 1.

The simple generate-and-test strategy of

Model A has been changed into an imperfect
hiliclimber to reflect the findings that (a) chil-
dren do back up, and (b) they are affected by
partial evaluations.

The model has two parameters: P, is the
double-move probability, and P, is the proba-
bility of being affected by EV. The values for
these parameters were empirically derived
from the analysis of double moves and all-or-
none evaluation described earlier: Py was set
to 10, and Ps was set to .69. Recall that 10% of
all moves were double moves. In setting P, to
this value, we are ignoring any possible
context-specific variation in the frequencies of
double moves. The value of P; is based on
two considerations. First, it is equal to the
mean of the partial evaluation sensitivities de-
scribed earlier. Second, it was empirically de-
termined (through several simulations) that P
= .69, provided a better fit than three other
values {63, .75, .B0). As in the case of Py,
selecting a single value for Ps ignores the fine
structure of different contexts and individual
differences

With the two new parameters and the
partial evaluation function, it is difficult to
compute Model B's probabilities of success
anahvtically. Therefore, we wrote a compu-

1.0
0.9
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0.3
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ter simulation program that embodied its
method. Each problem was presented to the
program 400 times, and each solution path
was scored as a 1 or 0 by the same criteria
used for subjects’ performance. Then, the pro-
portion of minimum path solutions (out of the
400) was computed, and this was converted to
a probability of sclution by the second at-
tempt.

The results are shown in the final column
in Table 2. Notice that of the three problems
with initially misleading partial evaluations;
twa of them (3 and 5) are somewhat harder for
Model B than for Model A, corresponding
more closely to subjects’ performance. Prob-
lem 2, which is aided by partial evaluation, is
easier for Model B than for Model A. As a
result of the reordering caused by these
changes, Model B accounts for over 70% of
the variance in subject performance, r{7) =
845, p < .01,

Even if subjects are using a Model B
strategy, there are many things that might go
wrong during its execution, and the longer a
problem is, the more likely is their occur-
rence. As shown in Figure 5, Model B outper-
forms subjects on the longer problems. The
path-length variable picks up these unknown
sources of error. We noted earlier that path
length alone accounted for only 18% of the
variation in problem difficulh . However, path
length is uncorrelated with Model B perfor-
mance, and the multiple regression of both
Model B performance and path length against
problem difficult accounts for 47% of the
variance

Discussion

The present studh wus desipned to ex-
tend our knowledye ubont the development

01 i ]

PROBLEM NUMBER

SUBJECT @ — MODEL A —— MODELB I — —

FIG 5—Actual versus predicted problem difficulty. Solid circles show proportion of all subjects
passing by second trial. Open eircles show probability that Model A would pass by second trial Open
squares show proportion of 400 cases that Model B passed by second trial



of problem-solving skills. By presenting pre-
schoolers with problems having ambiguous
subgoal ordering, we were able to discover
what weak methods they could invoke when
means-ends analysis was not useful. One ex-
treme possibility is that they resort to random
trial-and-error. The other is that they use
other, more appropriate, weak methods. In
several respects, the results of this study sup-
port the latter alternative.

First, as described earlier, even the ran-
dom component of Model B is highly con-
strained. The avoidance of double moves
suggests a rudimentary knowledge about
thoroughly useless actions that is not con-
veyed by a “trial-and-error’” view of young
children. The second important finding is that
solutions are not simply arrived at by chance,
since there is a look-ahead to the goal state,
and little deviation from the minimum path
once it is in sight. Third, children use partial
evaluations of nearly correct states to guide
their choice of moves. This sensitivity to in-
cremental progress may actually degrade chil-
dren’s performance (as in the garden path
problems). Nevertheless, it is reasonable for
children to attempt to use such information.

The full repertoire of weak methods
could follow a course of either strict sequen-
tial development, in which each method
evolves out of its simpler predecessors, or
broad-gauged parallel development, in which
rudimentary forms of many methods develop
simultaneously and relatively independently.
The results of this study are consistent with
the second view. They show that 4-year-olds
already have rudimentary forms of several
components of the weak methods. Further-
more, the fact that there were no age-related
effects over about a year and a half span sug-
gests wide individual variation in the course
of these acquisitions. Of course, with suf-
ficient age variation, there is an effect: Borys
(1984), using her original version of this puz-
zle with 7-, 9-, and 11-vear-olds, found a sys-
tematic improvement in performance with
age. Something must be developing, even if
‘not the repertoire of weak methods as such.
The likely candidates for “What develops” in
problem solving were mentioned at the out-
set: problem-specific knowledge and a trade-
off between efficiency of execution and de-
mands on immediate memory capacity. The
results of Borys's (1984} investigation provide
some evidence consistent with this view. As
for development of weak methods prior to
preschool age, not much is known, even

though that may be where the most important

changes occur (DeLoache & Brown, 1884;
Deloache et al., in press; Sugarman, 1982).
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